168 research outputs found

    The 2016 World Health Organization Classification of tumours of the Central Nervous System: what the paediatric neuroradiologist needs to know

    Get PDF
    The recently published 2016 World Health Organization (WHO) classification of tumours of the Central Nervous System (CNS) introduces a number of significant changes from the previous edition. Based on an improved understanding of the genetic and molecular basis of tumorigenesis there has been a shift towards defining tumours by means of these characteristics in addition to their histological features, thus providing an integrated diagnosis. In this article, we will provide a concise overview of the salient changes in the 2016 WHO classification of tumours of the CNS that are of relevance to the paediatric neuroradiologist when it comes to day-to-day reporting

    A prototype for water content measurement in partially saturated soils

    Get PDF
    The paper presents the technological set-up and calibration of a system based on impedance spectroscopy for measuring water content in partially saturated soils. The technique adopted is relatively recent in geotechnical practice; it is used herein to characterize the electrical response of a soil specimen among two conducting electrodes upon application of an alternate voltage and the measurement of the current intensity resulting across the specimen, for frequency values in the range [500 Hz - 50 kHz]. The complex impedance of the soil specimen is due to both resistance, i.e. opposition to current, and reactance, i.e. tendency of the system to yield and retrieve energy, and it depends on the specimen water content. An on-purpose experimental plan has been conceived and is presented herein, aimed at building a calibration function for deriving the water content in pyroclastic soils from the impedance measurements. Preliminary results reveal an adequate level of repeatability of the measurements and suggest the existence of a monotonic correlation between the impedance modulus and the gravimetric water content

    A Ca(V)2.1 N-terminal fragment relieves the dominant-negative inhibition by an Episodic ataxia 2 mutant

    Get PDF
    Episodic ataxia 2 (EA2) is an autosomal dominant disorder caused by mutations in the gene CACNA1A that encodes the pore-forming CaV2.1 calcium channel subunit. The majority of EA2 mutations reported so far are nonsense or deletion/insertion mutations predicted to form truncated proteins. Heterologous expression of wild-type CaV2.1, together with truncated constructs that mimic EA2 mutants, significantly suppressed wild-type calcium channel function, indicating that the truncated protein produces a dominant-negative effect (Jouvenceau et al., 2001; Page et al., 2004). A similar finding has been shown for CaV2.2 (Raghib et al., 2001). We show here that a highly conserved sequence in the cytoplasmic N-terminus is involved in this process, for both CaV2.1 and CaV2.2 channels. Additionally, we were able to interfere with the suppressive effect of an EA2 construct by mutating key N-terminal residues within it. We postulate that the N-terminus of the truncated channel plays an essential part in its interaction with the full-length CaV2.1, which prevents the correct folding of the wild-type channel. In agreement with this, we were able to disrupt the interaction between EA2 and the full length channel by co-expressing a free N-terminal peptide

    Narrative review of epilepsy: getting the most out of your neuroimaging

    Get PDF
    Neuroimaging represents an important step in the evaluation of pediatric epilepsy. The crucial role of brain imaging in the diagnosis, follow-up and presurgical assessment of patients with epilepsy is noted and has to be familiar to all neuroradiologists and trainees approaching pediatric brain imaging. Morphological qualitative imaging shows the majority of cerebral lesions/alterations underlying focal epilepsy and can highlight some features which are useful in the differential diagnosis of the different types of epilepsy. Recent advances in MRI acquisitions including diffusion-weighted imaging (DWI), post-acquisition image processing techniques, and quantification of imaging data are increasing the accuracy of lesion detection during the last decades. Functional MRI (fMRI) can be really useful and helps to identify cortical eloquent areas that are essential for language, motor function, and memory, and diffusion tensor imaging (DTI) can reveal white matter tracts that are vital for these functions, thus reducing the risk of epilepsy surgery causing new morbidities. Also positron emission tomography (PET), single photon emission computed tomography (SPECT), simultaneous electroencephalogram (EEG) and fMRI, and electrical and magnetic source imaging can be used to assess the exact localization of epileptic foci and help in the design of intracranial EEG recording strategies. The main role of these “hybrid” techniques is to obtain quantitative and qualitative informations, a necessary step to evaluate and demonstrate the complex relationship between abnormal structural and functional data and to manage a “patient-tailored” surgical approach in epileptic patients

    The infrared vibrational spectrum of andradite-grossular solid solutions: A quantum mechanical simulation

    Get PDF
    Infrared spectroscopy is a powerful technique for the characterization of minerals, permitting insights into their structural and thermodynamic properties. The intrinsic complexity of mineral solid solutions makes the interpretation of their spectroscopic data a challenging task. In this work, the IR vibrational spectra of andradite-grossular (Ca3Fe2Si3O12–Ca3Al2Si3O12) solid solutions were simulated at the ab initio level with the CRYSTAL09 code by using a large all-electron Gaussian-type basis set and the B3LYP hybrid functional. All the 23 symmetry-independent configurations resulting from the substitution of 1 to 8 Fe atoms with Al atoms in the 16a octahedral site of the andradite primitive cell were considered. The IR active transverse optical frequencies and their intensities were computed. Graphical representation of the spectra, animation of the modes and isotopic substitution of the cations were used as additional interpretation tools. The dominant high-frequency modes, corresponding to Si-O stretching motions, show a simple linear behavior of both frequencies and intensities with respect to the binary composition; this trend is related to the linear behavior of the mean lattice parameter. Also the frequencies of the low-energy bands show, roughly speaking, a linear dependence on composition; however, the behavior of the dominant intensities is more complicated and strongly connected to the Al and Fe atomic fraction. When considering different possible structures at fixed composition, some spectral features display a dependence upon short-range Y cation ordering. Overall, we show how ab initio calculations permit to analyze complex systems such as solid solutions, establishing relations among structure and properties and providing critical and robust interpretations to the experimental findings

    Two Cases of Guillain-Barré Syndrome Variants Presenting With Dysautonomia

    Get PDF
    We describe 2 pediatric cases presenting with posterior reversible encephalopathy syndrome secondary to autonomic dysfunction preceding the onset of motor symptoms in Guillain-Barré syndrome variants. Patient 1 presented acutely with encephalopathy, cerebellar signs, hypertension, lower limb weakness, and respiratory decompensation. Magnetic resonance imaging (MRI) brain showed occipital lesions consistent with posterior reversible encephalopathy syndrome. Nerve conduction studies were consistent with Miller-Fisher syndrome. After intravenous immunoglobulin and plasmapheresis, he improved clinically with radiological resolution. Patient 2 presented with headache, leg pain, seizures, and significant hypertension. Brain MRI was normal but spine MRI revealed enhancement of the cauda equina ventral nerve roots. She was areflexic with lower limb weakness a few days after intensive care unit admission and made a significant improvement after treatment with intravenous immunoglobulin. In children presenting with posterior reversible encephalopathy syndrome in the absent of other causes of primary hypertension, Guillain-Barré syndrome variants are an important differential etiology, presenting with autonomic dysfunction, even before signs of motor weakness become evident

    A CaV2.1 N-terminal fragment relieves the dominant-negative inhibition by an Episodic ataxia 2 mutant

    Get PDF
    AbstractEpisodic ataxia 2 (EA2) is an autosomal dominant disorder caused by mutations in the gene CACNA1A that encodes the pore-forming CaV2.1 calcium channel subunit. The majority of EA2 mutations reported so far are nonsense or deletion/insertion mutations predicted to form truncated proteins. Heterologous expression of wild-type CaV2.1, together with truncated constructs that mimic EA2 mutants, significantly suppressed wild-type calcium channel function, indicating that the truncated protein produces a dominant-negative effect (Jouvenceau et al., 2001; Page et al., 2004). A similar finding has been shown for CaV2.2 (Raghib et al., 2001). We show here that a highly conserved sequence in the cytoplasmic N-terminus is involved in this process, for both CaV2.1 and CaV2.2 channels. Additionally, we were able to interfere with the suppressive effect of an EA2 construct by mutating key N-terminal residues within it. We postulate that the N-terminus of the truncated channel plays an essential part in its interaction with the full-length CaV2.1, which prevents the correct folding of the wild-type channel. In agreement with this, we were able to disrupt the interaction between EA2 and the full length channel by co-expressing a free N-terminal peptide

    A cryogenic magneto-optical device for long wavelength radiation

    Get PDF
    We present here a small-scale liquid helium immersion cryostat with an innovative optical setup suitable to work in long wavelength radiation ranges and under an applied magnetic field. The cryostat is a multi-stage device with several shielding in addition to several optical stages. The system has been designed with an external liquid nitrogen boiler to reduce liquid bubbling. The optical and mechanical properties of the optical elements were calculated and optimized for the designed configuration, while the optical layout has been simulated and optimized among different configurations based on the geometry of the device. The final design has been optimized for low-noise radiation measurements of proximity junction arrays under an applied magnetic field in the wavelength range λ = 250 μm-2500 μm

    The cryogenic magneto-optical device for terahertz radiation detection

    Get PDF
    We present here a small-scale liquid Helium (LHe) immersion cryostat with an innovative optical setup suitable to work in long wavelength radiation ranges and under applied magnetic field. The cryostat is a multi stage device with several shielding in addition to several optical stages. The system has been designed with an external liquid Nitrogen boiler to reduce the liquid bubbling. The optical and mechanical properties of the optical elements were calculated and optimized for the designed configuration while the optical layout has been simulated and optimized among different configurations based on the geometry of the device. The final design has been optimized for low noise radiation measurements of proximity junction arrays under applied magnetic field in the wavelength range λ=250-2500 µm

    The role of preoperative diffusion tensor imaging in predicting and improving functional outcome in pediatric patients undergoing epilepsy surgery: a systematic review

    Get PDF
    Objective: Diffusion tensor imaging (DTI) is a useful neuroimaging technique for surgical planning in adult patients. However, no systematic review has been conducted to determine its utility for pre-operative analysis and planning of Pediatric Epilepsy surgery. We sought to determine the benefit of pre-operative DTI in predicting and improving neurological functional outcome after epilepsy surgery in children with intractable epilepsy. Methods: A systematic review of articles in English using PubMed, EMBASE and Scopus databases, from inception to January 10, 2020 was conducted. All studies that used DTI as either predictor or direct influencer of functional neurological outcome (motor, sensory, language and/or visual) in pediatric epilepsy surgical candidates were included. Data extraction was performed by two blinded reviewers. Risk of bias of each study was determined using the QUADAS 2 Scoring System. Results: 13 studies were included (6 case reports/series, 5 retrospective cohorts, and 2 prospective cohorts) with a total of 229 patients. Seven studies reported motor outcome; three reported motor outcome prediction with a sensitivity and specificity ranging from 80 to 85.7 and 69.6 to 100%, respectively; four studies reported visual outcome. In general, the use of DTI was associated with a high degree of favorable neurological outcomes after epilepsy surgery. Conclusion: Multiple studies show that DTI helps to create a tailored plan that results in improved functional outcome. However, more studies are required in order to fully assess its utility in pediatric patients. This is a desirable field of study because DTI offers a non-invasive technique more suitable for children. Advances in knowledge: This systematic review analyses, exclusively, studies of pediatric patients with drug-resistant epilepsy and provides an update of the evidence regarding the role of DTI, as part of the pre-operative armamentarium, in improving post-surgical neurological sequels and its potential for outcome prediction
    • …
    corecore